BAIYUMINE-A AND -B, TWO ACRIDONE ALKALƏIDS FROM CITRUS GRANDIS

TIAN SHUNG WU

Department of Applied Chemistry, Providence College of Arts and Science, Taichung, Taiwan 40211, Republic of China.

(Revised received 24 June 1986)

Key Word Index --Citrus grandis f. hakunikuyu; Rutaceae; acridone alkaloids; baiyumine-A; baiyumine-B; NMR.

Abstract—Two new acridone alkaloids, baiyumine-A and -B, were isolated from the root bark of Citrus grandis f. hakunikuyu. Their structures were elucidated by spectral analysis and chemical transformation.

INTRODUCTION

In a previous paper [1], we reported the isolation of several acridone alkaloids, quinolone alkaloids and coumarins from the root bark of Citrus grandis f. hakunikuyu (Chinese name: Baiyu). We now report the isolation and structural elucidation of two new acridone alkaloids, namely, baiyumine-A and -B, obtained from the lower polar fraction of the acetone extract of the same plant.

RESULTS AND DISCUSSION

Baiyumine-A (1), was isolated as orange plates, mp 160-161°, C₂₀H₁₉NO₄ ([M]* 337). The UV spectrum of 1 had maximum absorption at 235, 265, 287, 321, 344 and 418 nm characteristic of the 9-acridone nucleus [2-4]. The presence of a chelated phenolic hydroxyl group at the 1-position was indicated by a bathochromic shift of UV bands with aluminium chloride and the ¹H NMR signal at δ 14.25 (1H, s, exchangeable with D₂O). The ¹H NMR spectrum of 1 showed an ABC pattern of signals at δ 7.10-7.35 (2H, m) and 7.96 (1H, dd, J = 2.5 and 7 Hz) due to H-6, 7 and H-8, respectively. The deshielding of H-8 is reasonable because it lies in the peri-position with respect to the 9-carbonyl moiety. The AB type quartets at δ 5.54 and 6.65 (each 1H, d, J = 10 Hz) and a six-proton singlet at $\delta 1.51$ revealed the presence of a dimethylpyran system attached to ring C because the lower signal of this AB quartet had a long range coupling (J = 0.8 Hz) with the doublet at δ 6.25 (H-2). Two sharp singlets at δ 3.74 and 4.01 (each 3H) were attributed to N-methyl and methoxyl groups. In the 13CNMR spectrum of baiyumine-A, signals of an N-methyl carbon and the olefinic C-1' of the dimethylpyran ring appeared at δ 49.1 and 121.0, respectively. The chemical shift values suggested that the dimethylpyran ring had an angular orientation [5]. Furthermore, treatment of 5-hydroxynoracronycine (2) with diazomethane afforded a 5-O-methyl derivative which was identical with baiyumine-A by comparisons of ¹HNMR, IR, TLC and mmp. On the basis of these results, baiyumine-A should be represented by formula 1 which was synthesized by Fraser and Lewis in 1973 [4]. This is the first report of the occurrence of baiyumine-A (1) in nature [6].

Baiyumine-B (3) was obtained as yellow plates from ether, mp 145-147°. The molecular formula of 3 was established as C22H25NO5 by microanalysis and the $[M]^+$ at m/z 383 in the mass spectrum. The UV and IR spectra (see Experimental) also showed absorptions characteristic of 9-acridones [2-4]. In the ¹H NMR spectrum of 3 there was a strongly intramolecularly hydrogen bonded proton at δ 14.13, which was assigned to the C-1 hydroxyl group of an acridone nucleus. AB-type proton signals at $\delta 6.91$ and 8.03 (each 1H, d, J = 8 Hz) were attributed to mutually ortho-located protons on the A ring, and the lower field signal could be assigned to H-8 which was affected by a deshielding of the 9-carbonyl moiety. The presence of three methoxyls, an N-methyl and a prenyl group in the molecule was confirmed by NMR and/or mass spectra (methoxyl and N-methyl: δ_H 3.98, 3.89, 3.87 and 3.75; δ_C 60.1 (q), 56.3 (q), 55.9 (q) and 48.6 (q); prenyl: $\delta_{\rm H}$ 1.70 (3H, s), 1.77 (3H, s), 3.42 (2H, d, J = 7 Hz), and 5.24 (1H, m); δ_C 18.0 (q), 25.7 (q), 26.1 (t) and 123.7 (d); m/z 328 [M - CH=C(CH₃)₂] and 315 $[M-CH_2CH=C(CH_3)_2+H]^*$) The chemical shift value of an N-methyl carbon and a methylene carbon of 3 appeared at δ 48.6 and 26.1, respectively, in the

риуго 26:3-s 871

 ^{13}C NMR spectrum which indicated that both peripositions (C-4 and C-5) of the N-methyl group were substituted and the prenyl group was located at C-4 [5]. Thus, a sharp one proton singlet at δ 6.33 was assigned to a lone aromatic proton of H-2. The above data suggested the structure of baiyumine-B as formula 3. In agreement with this proposition, methylation of grandisinine (4) with diazomethane furnished a mono-O-methyl derivative of 3 which was identical with baiyumine-B by comparisons of 1 H NMR, IR, TLC and mmp. On the basis of these spectral analysis and chemical transformation, baiyumine-B was assigned structure 3.

EXPERIMENTAL

All mps are uncorr. ¹H and ¹³C NMR spectra were recorded in CDCl₃; chemical shifts are given in ppm (δ) with TMS as int. ref. MS were measured with a direct inlet system. UV spectra were determined in MeOH and IR spectra in CHCl₃.

Isolation of alkaloids. Root bark of C, grandis Osbeck f, hakunikuyu Hayata (6 kg) was macerated in Me₂CO and extracted repeatedly with the same solvent. The Me₂CO extracts were combined and concd under red. press. The crude extract was separated by the method previously described [1]. The C_6H_6 fraction was rechromatographed on silica gel and eluted with C_6H_6 to provide three fractions. Fraction I was repeatedly chromatographed on prep. TLC plates (silica gel) with C_6H_6 to give I. Fraction III was also separated by prep. TLC on silica gel in C_6H_6 to afford 3.

Baiyumine-A (1). Orange plates from Et₂O, mp 160–161° (lit. 155–157°) [4] (calculated for $C_{20}H_{10}NO_4$: C, 71.20; H, 5.68; N, 4.15; found: C, 71.13; H, 5.68; N, 4.13). UV λ_{\max} nm:235, 265, 287, 321, 344, 418. UV λ_{\max} (+ NaOMe) nm:235, 268, 287, 320, 344, 418. UV λ_{\max} (+ AlCl₃) nm:216, 260, 290 (sh), 302, 335 (sh), 360, 470. IR ν_{\max} cm⁻¹:1625, 1590, 1555. MS m:z (°₀):337 ([M]°, 41), 322 (100), 306 (22), 292 (3), 278 (12), 261 (5), 256 (8). ¹³C NMR: δ 181.9 (s), 164.5 (s), 161.4 (s), 150.6 (s), 147.8 (s), 138.1 (s), 125.0 (s), 123.8 (d), 123.1 (d), 121.0 (d) 117.7 (d), 115.4 (d) 107.3 (s), 102.4 (s), 98.2 (d), 76.6 (s), 56.1 (q), 49.1 (q), 27.2 (q). Methylation of 5-hydroxynoracronycine (2). 5-Hydroxy-

noracronycine (30 mg) was suspended in Et₂O (50 ml), treated with excess CH₂N₂ and left overnight. The soln was evaporated to leave an orange crystal, which was recrystallized from Et₂O to give 30 mg of orange plates, mp 160-161°. This derivative was identified as baiyumine-A (1) by comparisons of ¹H NMR, IR, TLC, mmp.

Baiyumine-B (3). Yellow plates from Et₂O, mp 145 147° (calculated for $C_{22}H_{25}NO_3$: C, 68.91; H, 6.57; N, 3.65; found: C, 67.93; H, 6.55; N, 3.67). UV λ_{max} nm (log ε): 223 (4.20), 262 (sh, 4.63), 269 (4.65), 335 (4.27), 400 (3.73). UV λ_{max} (+ NaOMe) nm: 223, 263 (sh), 270, 336, 400. UV λ_{max} (+ AlCl₃) nm. 238, 265 (sh), 281, 362, 450. IR ν_{max} cm $\frac{1}{2}$: 1625, 1585, 1560. MS $m \approx (^{\circ}_{o})$: 383 ([M] $^{\circ}_{o}$, 51), 368 (100), 352 (5), 338 (27), 328 (8), 326 (12), 322 (15), 315 (12), 306 (5), 300 (6), 258 (6), 256 (8), 243 (28). 13 C NMR: δ 182.4 (s), 164.9 (s), 163.2 (s), 157.5 (s), 150.1 (s), 143.6 (s), 138.6 (s), 131.7 (s), 123.7 (d), 122.5 (d), 118.8 (s), 109.3 (s), 107.7 (d), 106.9 (s), 93.8 (d), 60.1 (q), 56.3 (q), 55.9 (q), 48.6 (q), 26.1 (t), 25.7 (q), 18.0 (q).

Methylation of grandisinine (4). Treatment of 4 (20 mg) with CH_2N_2 in the usual way afforded yellow plates (19 g), mp 145 146. The product was shown to be identical with baryumine-B (3) by IR, 1H NMR, TLC, mmp.

Acknowledgement . The author thanks the financial support of this work by a grant (NCS75-0201-M126C-03) from the National Science Council of the Republic of China.

REFERENCES

- Wu, T. S., Kuoh, C. S. and Furukawa, H. (1983) *Phytochemistry* 22, 1493.
- Reisch, J., Szendri, K., Minker, E. and Novak, I. (1972) Pharmazie 27, 208.
- 3. Brown, R. D. and Lahey, F. N. (1950) Aust. Sci. Res. A3, 593.
- Fraser, A. W. and Lewis, J. R. (1973) J. Chem. Soc. Perkin Trans. 1 1173.
- Furukawa, H., Yogo, M. and Wu, T. S. (1983) Chem. Pharm. Bull. 31, 3084.
- Recently, Dr. Ju-Ichi M., Mukogawa Women's University, Japan has informed me that he obtained 1 from Citrus natsudaidai Hayata.